參考價(jià)格
面議型號(hào)
品牌
產(chǎn)地
德國(guó)樣本
暫無(wú)看了納米空間分辨超快光譜和成像系統(tǒng)的用戶又看了
虛擬號(hào)將在 180 秒后失效
使用微信掃碼撥號(hào)
納米空間分辨超快光譜和成像系統(tǒng)
“空間和時(shí)間的結(jié)合”— 納米分辨和飛秒級(jí)別的光譜
超快光譜技術(shù)擁有諸多特色,例如極高的時(shí)間分辨率,豐富的光與物質(zhì)的非性相互作用,可以用光子相干地調(diào)控物質(zhì)的量子態(tài),其衍生和嫁接技術(shù)帶來(lái)許多凝聚態(tài)物理實(shí)驗(yàn)技術(shù)的變革等等。然而,受制于激發(fā)波長(zhǎng)的限制(可見(jiàn)-近紅外),超快光譜在空間分辨上受到了一定的制約,在對(duì)一些微納尺寸結(jié)構(gòu)的材料研究中,諸如一維半導(dǎo)體納米線,二維拓?fù)洳牧?、納米相變材料等,無(wú)法精準(zhǔn)地進(jìn)行有效的超快光譜分析。
德國(guó)Neaspec公司利用十?dāng)?shù)年在近場(chǎng)及納米紅外領(lǐng)域的技術(shù)積累,開發(fā)出了全新的納米空間分辨超快光譜和成像系統(tǒng),其pump激發(fā)光可兼容可見(jiàn)到近紅外的多組激光器,probe探測(cè)光可選紅外(650-2200 cm-1)或太赫茲(0.5-2 T)波段,實(shí)現(xiàn)了在超高空間分辨(20 nm)和超高時(shí)間分辨(50 fs)上對(duì)被測(cè)物質(zhì)的同時(shí)表征。
技術(shù)原理:
設(shè)備特點(diǎn)和參數(shù):
→ 超高空間分辨和時(shí)間分辨同時(shí)實(shí)現(xiàn);
→ 20-50 nm空間分辨率;
→ 根據(jù)pump光源時(shí)間分辨可達(dá)50 fs;
→ probe光譜可選紅外(650-2200 cm-1)或太赫茲(0.5-2 T)
應(yīng)用領(lǐng)域:
→ 二維材料
→ 半導(dǎo)體
→ 納米線/納米顆粒
→ 等離激元
→ 高分子/生物材料
→ 礦物質(zhì)
......
應(yīng)用案例:
■ 納米紅外超快光譜
分辨率為10nm的InAs納米線紅外成像,并結(jié)合時(shí)間分辨超快光譜分析載流子衰減層的形成過(guò)程
參考:M. Eisele et al., Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution, Nature Phot. (2014) 8, 841.
穩(wěn)態(tài)開關(guān)靈敏性:容易發(fā)生相變的區(qū)域,光誘導(dǎo)散射響應(yīng)較大
參考:M. A. Huber et al., Ultrafast mid-infrared nanoscopy of strained vanadium dioxide nanobeams, Nano Lett. 2016, 16, 1421.
參考:G. X. Ni et al., Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene, Nature Phot. (2016) 10, 244.
參考:Mrejen et al., Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow- gap semiconductor, Sci. Adv. (2019), 5, 9618.
■ 范德華材料 WSe2 中的超快研究
參考:Mrejen et al., Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging, Sci. Adv. (2019), 5, 9618.
■ 黑磷中的近紅外超快激發(fā)
黑磷的high-contrast interband性質(zhì)使其具有半導(dǎo)體性質(zhì),在光誘導(dǎo)重組過(guò)程中表面激發(fā)的電子空隙對(duì)(electron-hole pairs)~50fs并在5ps內(nèi)消失
參考:M. A. Huber et al.,F(xiàn)emtosecond photo-switching of interface polaritons in black phosphorus heterostructures, Nat. Nanotechnology. (2016), 5, 9618.
■ 多層石墨烯中等離子效應(yīng)衰減效應(yīng)
參考:M. Wagner et al., Ultrafast and Nanoscale Plasmonic Phenomena in Exfoliated Graphene Revealed by Infrared Pump?Probe Nanoscopy, Nano Lett. 2014, 14, 894.
發(fā)表文章:
neaspec中國(guó)用戶發(fā)表文章超80篇,其中36篇影響因子>10。
部分文章列表:
● M. B. Lundeberg et al., Science 2017 AOP.
● F. J. Alfaro-Mozaz et al., Nat. Commun. 2017, 8, 15624.
● P. Alonso-Gonzales et al., Nat. Nanotechnol. 2017, 12, 31.
● M. A. Huber et al., Nat. Nanotechnol. 2017, 12, 207.
● P. Li et al., Nano Lett. 2017, 17, 228.
● T. Low et al., Nat. Mater. 2017, 16, 182.
● D. Basov et al., Nat. Nanotechnol. 2017, 12, 187.
● M. B. Lundberg et al., Nat. Mater. 2017, 16, 204.
● D. Basov et al., Science 2016, 354, 1992.
● Z. Fei et al., Nano Lett. 2016, 16, 7842.
● A. Y. Nikitin et al., Nat. Photonics 2016, 10, 239.
● G. X. Ni et al., Nat. Photonics 2016, 10, 244.
● A. Woessner et al., Nat. Commun. 2016, 7, 10783.
● Z. Fei et al., Nano Lett. 2015, 15, 8271.
● G. X. Ni et al., Nat. Mater. 2015, 14, 1217.
● E. Yoxall et al., Nat. Photonics 2015, 9, 674.
● Z. Fei et al., Nano Lett. 2015, 15, 4973.
● M. D. Goldflam et al., Nano Lett. 2015, 15, 4859.
● P. Li et al., Nat. Commun. 2015, 5, 7507.
● S. Dai et al., Nat. Nanotechnol. 2015, 10, 682.
● S. Dai et al., Nat. Commun. 2015, 6, 6963.
● A. Woessner et al., Nat. Mater. 2014, 14, 421.
● P. Alonso-González et al.,Science 2014, 344, 1369.
● S. Dai et al., Science 2014, 343, 1125.
● P. Li et al., Nano Lett. 2014, 14, 4400.
● A. Y. Nikitin et al., Nano Lett. 2014, 14, 2896.
● M. Wagner et al., Nano Lett. 2014, 14, 894.
● M. Schnell et al., Nat. Commun. 2013, 5, 3499.
● J. Chen et al., Nano Lett. 2013, 13, 6210.
● Z. Fei et al., Nat. Nanotechnol. 2012, 8, 821.
● J. Chen et al., Nature 2012, 487, 77.
● Z. Fei et al., Nature 2012, 487, 82.
暫無(wú)數(shù)據(jù)!