国产在线 | 日韩,疯狂做受xxxx高潮不断,影音先锋女人aa鲁色资源,欧美丰满熟妇xxxx性大屁股

首頁 > 分析儀器設(shè)備 > 其他 >
Navitar深紫外(DUV)光學(xué)系統(tǒng)
Navitar深紫外(DUV)光學(xué)系統(tǒng)

參考價格

面議

型號

品牌

產(chǎn)地

樣本

暫無
江陰韻翔光電技術(shù)有限公司

會員

|

第2年

|

生產(chǎn)商

工商已核實

留言詢價
核心參數(shù)
產(chǎn)品介紹
創(chuàng)新點
相關(guān)方案
相關(guān)資料
用戶評論
公司動態(tài)
問商家
留言詢價
×

*留言類型

*留言內(nèi)容

*聯(lián)系人

*單位名稱

*電子郵箱

*手機號

提交

虛擬號將在 180 秒后失效

使用微信掃碼撥號

為了保證隱私安全,平臺已啟用虛擬電話,請放心撥打(暫不支持短信)
×
是否已溝通完成
您還可以選擇留下聯(lián)系電話,等待商家與您聯(lián)系

需求描述

單位名稱

聯(lián)系人

聯(lián)系電話

Email

已與商家取得聯(lián)系
同意發(fā)送給商家
產(chǎn)品介紹
創(chuàng)新點
相關(guān)方案
相關(guān)資料
用戶評論
公司動態(tài)
問商家

Navitar 深紫外(DUV)光學(xué)系統(tǒng)

NanoVue 248nm 4x 深紫外變焦系統(tǒng) ( 光學(xué)檢測 0.1um)

提供工業(yè)級深紫外變焦解決方案

針對進一步擴大光學(xué)分辨率的需求,Navitar開發(fā)出NanoVue 248nm 4X深紫外變焦鏡頭,用于光學(xué)檢測。NanoVue光學(xué)系統(tǒng)工作在深紫外(DUV)波段,用于檢測和分析關(guān)鍵的缺陷。相對于傳統(tǒng)的可見光顯微鏡,NanoVue成倍地提高了分辨率的極限。

90nm分辨率

放大倍率75X - 300X, 配合100X 物鏡

0.15 to 0.037 mm FOV 對應(yīng) 2/3" 格式傳感器和100X物鏡

采用深紫外物鏡,檢測尺度可達0.1 um

工業(yè)級深紫外變焦解決方案

應(yīng)用

? UV reticle & photomask inspection (UV 投影和掩模檢測)

? Thin film measurement ( 薄膜測量)

? Wafer inspection ( 晶圓檢測)

? CD metrology ( 關(guān)鍵尺寸測量)

? Failure analysis ( 失效分析)

? Process control ( 過程控制)

? Protein crystal location ( 蛋白質(zhì)晶體 率選和位 定位)

? Pharmaceutical quality control ( 藥物質(zhì)量控制)

? Contaminant analysis ( 雜質(zhì)分析)

? Cellular imaging & DNA analysis ( 細胞成像和DNA 分析)

NanoVue變焦鏡頭是理想的新產(chǎn)品開發(fā)和集成DUV儀器的工具,具有更高的光通量,允許客戶快速開發(fā)新的、靈活的自動化儀器,具備功能豐富、成本更低、體積更小等特點。

以下是利用深紫外(DUV) 光學(xué)系統(tǒng)對 蛋白晶體 (crystalline of a protein) 進行篩選的應(yīng)用

案例。 請參考。 -- Picking out proteins with UV.

Picking out proteins with UV

By Mike May

In the late 1990s, Vu Tran, president of Korima (Carson, CA), and Gil Ravich, president of Ravich Research (Lawndale, CA), developed a microscope that could image samples under ultraviolet (UV) light. They developed this scope to “see” down to about 0.2 μm to examine semiconductors. When electronics makers started using nitrides, though, UV couldn?t go through

them. That turned Tran and Ravich?s scope into a fossil. “I was very frustrated,” says Tran, “and I put the microscope in my garage and said, ?Forget it!? ”

Then, in the summer of 2003, Tran and Ravich?s luck changed. Someone from a pharmaceutical company–they won?t say which one–approached them about using their scope to image proteins. By adding two filters, the pair made their UV microscope focus on light at 280 nm, where crystalline proteins fluoresce and are thus distinguishable from salt crystals. Making this distinction is a key step in deciding whether to move a protein to x-ray crystallography to find its structure, which helps pharmaceutical scientists understand a disease target or refine a drug. Unfortunately, the pharmaceutical company and Korima couldn?t agree about ownership of intellectual property, so Tran and Ravich put away their scope once more.

Figure 1. Results of work done to make a crystalline form of a protein can be difficult to see under visible light (), but protein crystals become quite clear under ultraviolet light at 280 nm (bottom). Moreover, at 280 nm, protein crystals can be distinguished from salts. (Images courtesy of Korima)

Eventually, Korima?s scope, the PRS-1000 Protein Review Station, did come on the market–a market that is getting bigger in terms of customers and vendors.

Ultraviolet vision

Although various nomenclatures define UV?s span differently, it is said to range from 10 or so nanometers to 400. “One advantage to using UV microscopy is that it allows you to image features that would not normally be seen with a standard visible-range microscope,” says Paul Martin, president of CRAIC Technologies (San Dimas, Calif.). The shorter wavelengths of UV reveal things that visible light cannot.

In many situations, though, scientists want an instrument that works over a range of wavelengths. Consequently, CRAIC developed the UVM-1 Ultraviolet Microscope, which works in UV, visible, and near-infrared (NIR) regions. “It was a real challenge to achieve high image quality while using the same optics over such a broad spectral region,” says Martin.

Given growing competition, however, no one reveals the precise details behind any optical device. As Martin says, it requires “experience, advanced optical design, and extensive experimentation.”

Some companies apply such experience to specific pieces, like the NanoVue 248 nm 4X Deep UV Zoom from Navitar (Rochester, NY). William Bridson, director of research and development at Navitar, says that this lens “is being used in a number of common biological applications where specimens are transparent in the visible region, but absorb light in the ultraviolet spectrum.” Beyond looking for protein crystals, says Bridson, this lens can be used for “pharmaceutical quality control, contaminant analysis, cellular imaging, and DNA analysis.”

UV microscopy also requires the right illumination. While Rapp Optoelectronics (Hamburg, Germany) makes UV microscopes, it also makes light sources. “We use white light, and then filters and optics optimize the wavelength,” says Gert Rapp, general manager. If someone needs high-power light at, say, 220 nm, Rapp uses pulsed xenon light as the source. In short, though, different applications need different features. As an example, Rapp notes that “DNA absorbs strongly at around 260 nm, so you can measure it directly.”

Rapp Optoelectronics will even modify a customer?s existing microscope for UV applications. “We?ve done that on a variety of microscopes,” Rapp says.

Digging even deeper

To look even closer at samples, some scientists turn to x-rays. Conventional x-rays–because of their high energy–go right through a sample and get detected on a photographic plate. Soft x-rays, though, are lower in energy, and they get absorbed. “Soft x-rays use diffraction optics. You can make lens and mirrors and nanostructures with features about the size of the wavelengths,” explains David T. Attwood, professor in residence in electrical engineering and computer science at the University of California at Berkeley and director of the Center for X-Ray Optics at the Lawrence Berkeley National Laboratory.

These wavelengths for soft x-rays go down to about 20 nm, at the shortest range of what some scientists still call UV. “At 20 nm,” says Attwood, “all materials are absorptive there.” So soft x-rays provide natural contrast with biological materials. Compared with looking at protein crystals at 280 nm, a soft-x-ray system increases the resolution by a factor of more than 10.

Figure 2. Ultraviolet-viewing setups require specialized pieces, such as the NanoVue 248 nm 4X Deep UV Zoom used in this microscope. (Image courtesy of Navitar).

Consequently, soft-x-ray microscopy can be used to image a variety of subcellular features. “In the cylasm,” says Attwood, “you would see the vesicles, and you can measure their variant absorption.”

Still, soft x-rays create some obstacles. For example, a sample must be fixed, so you can?t see dynamic events. Nonetheless, Attwood points out that soft-x-ray microscopy is faster than electron microscopy, while providing similar resolution. “You can look at lots of samples and do statistics,” he says. “You can also do so with three-dimensional imaging.” A researcher, for

example, could look at the distribution of proteins and then knock out a gene and see if the distribution changes.

In the June 2008, Journal of Structural Biology, Dilworth Y. Parkinson of the Lawrence Berkeley National Laboratory and colleagues describe using soft x-rays to create three-dimensional images of schizosaccharomyces pombe–or yeast–cells. As Dilworth and colleagues write: “In addition to imaging intact cells, soft-x-ray tomography has the advantage of not requiring the use of any staining or fixation protocols–cells are simply transferred from their growth environment to a sample holder and immediately cryofixed. In this way the cells can be imaged in a near native state.

“Soft-x-ray tomography is also capable of imaging relatively large numbers of cells in a short period of time, and is therefore atechnique that has the potential to produce information on organelle morphology from statistically significant numbers of cells.”

As with many advances in microscopy, UV and its near neighbors give scientists a closer look at biology. Moreover, researchers are only beginning to see what this technology can reveal

創(chuàng)新點

暫無數(shù)據(jù)!

相關(guān)方案
暫無相關(guān)方案。
相關(guān)資料
暫無數(shù)據(jù)。
用戶評論

產(chǎn)品質(zhì)量

10分

售后服務(wù)

10分

易用性

10分

性價比

10分
評論內(nèi)容
暫無評論!
公司動態(tài)
暫無數(shù)據(jù)!
技術(shù)文章
暫無數(shù)據(jù)!
問商家
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)的工作原理介紹?
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)的使用方法?
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)多少錢一臺?
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)使用的注意事項
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)的說明書有嗎?
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)的操作規(guī)程有嗎?
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)的報價含票含運費嗎?
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)有現(xiàn)貨嗎?
  • Navitar深紫外(DUV)光學(xué)系統(tǒng)包安裝嗎?
Navitar深紫外(DUV)光學(xué)系統(tǒng)信息由江陰韻翔光電技術(shù)有限公司為您提供,如您想了解更多關(guān)于Navitar深紫外(DUV)光學(xué)系統(tǒng)報價、型號、參數(shù)等信息,歡迎來電或留言咨詢。
  • 推薦分類
  • 同類產(chǎn)品
  • 該廠商產(chǎn)品
  • 相關(guān)廠商
  • 推薦品牌
同品牌產(chǎn)品
RS薄型旋轉(zhuǎn)臺
關(guān)注度 1093
Edmund探測器
關(guān)注度 434
免費
咨詢
手機站
二維碼