參考價格
面議型號
品牌
產(chǎn)地
德國樣本
暫無看了TriOS RPMS自由落體式輻射剖面測量系統(tǒng)的用戶又看了
虛擬號將在 180 秒后失效
使用微信掃碼撥號
產(chǎn)品介紹 特點(diǎn)及應(yīng)用 技術(shù)參數(shù) 文獻(xiàn)資料相關(guān)產(chǎn)品 相關(guān)文檔
TriOS RPMS是一款性價比高、輕便、低功耗、下降速度可調(diào)的自由落體式剖面高光譜輻射測量系統(tǒng)。該系統(tǒng)能有效的避開船體陰影的影響,獲取高精度的水下環(huán)境光場(向下輻照度和向上輻亮度),廣泛地適用于近岸渾濁水體及清潔大洋水體的漫射衰減系數(shù)和遙感反射率的測量。此外,該系統(tǒng)可按用戶需求進(jìn)行定制集成向上輻照度、葉綠素和CDOM熒光傳感器等。
軟件功能
能實時查看設(shè)備狀態(tài)包括實時深度、姿態(tài)及輻射值。能及時顯示向上輻亮度和向下輻照度隨深度變化情況,界面友好,能實時處理所測數(shù)據(jù)獲取漫射衰減系數(shù)、光合有效輻射、遙感反射率和歸一化離水輻亮度等。
性能對比
與高性能的美國Biospherical公司生產(chǎn)的多波段C-OPS進(jìn)行了現(xiàn)場對比測量,性能優(yōu)異。
特點(diǎn)
輕便,功耗低
自由落體式下降,速度可調(diào)0.1~1.0 m/s
可有效避開船體陰影影響
高光譜、高靈敏度輻照度和輻亮度測量
精度高,積分時間自適應(yīng),也可手動設(shè)置
模塊化系統(tǒng),用戶可根據(jù)需求選購
**的納米涂層技術(shù),防污染
耐壓深度**可達(dá)300 m
應(yīng)用
離水輻亮度、漫射衰減系數(shù)和遙感反射率測量
海色衛(wèi)星數(shù)據(jù)印證
光化學(xué)、生物光學(xué)、海洋生態(tài)學(xué)研究
水下環(huán)境光場研究
遙感反演模型的建立
藻類水華研究
RAMSES傳感器參數(shù)列表
ACC余弦輻照度 | ARC輻亮度 | ASC球形輻照度 | |||
---|---|---|---|---|---|
UV | UV/VIS | VIS | VIS | VIS | |
波長(nm) | 280~500 | 280~720 | 320~950 | 320~950 | 320~950 |
檢測器 | 256 通道硅光電檢測器 | ||||
光譜采樣 [nm/pixel] | 2.2 | 2.2 | 3.3 | 3.3 | 3.3 |
光譜精度 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 |
實際通道 | 100 | 200 | 190 | 190 | 190 |
ACC余弦輻照度 | ARC輻亮度 | ASC球形輻照度 | ||
---|---|---|---|---|
UV | VIS | VIS | VIS | |
波長(nm) | 280~500 | 320~950 | 320~950 | 320~950 |
典型飽和度 (IT: 4 ms) 單位:Wm-2 nm-1 | 20 (300 nm)* 17 (360 nm)* 18 (500 nm)* | 10 (400 nm)* 8 (500 nm)* 14 (700 nm)* | 1Wm-2 nm-1 sr-1 (500 nm) | 20 (400 nm)* 12 (500 nm)* 15 (700 nm)* |
典型NEI (IT: 8 s) 單位:μWm-2 nm-1 | 0.85 (300 nm)** 0.75 (360 nm)** 0.80 (500 nm)** | 0.4 (400 nm)** 0.4 (500 nm)** 0.6 (700 nm)** | 0.25 μWm-2 nm-1 sr-1 | 0.8(400 nm)** 0.6(500 nm)** 0.8(700 nm)** |
收集器類型 | 余弦檢測器 | FOV:空氣中7° | 球形檢測2Pi | |
精度 | 優(yōu)于6~10%(取決于波長范圍) | 優(yōu)于6% | 優(yōu)于5% | |
積分時間 | 4 ms~8 s |
傳感器技術(shù)規(guī)格
測量原理 | 輻照度或輻亮度 | ||
T100響應(yīng)時間 | ≤ 10 s (脈沖模式) | 測量角度 | 40°±10° |
數(shù)據(jù)存儲 | - | 測量間隔 | ≤ 8 s(脈沖模式) |
外殼材質(zhì) | 不銹鋼(1.4571/1.4404)或鈦合金(3.7035) | ||
大小(L x Φ) | ACC:260 mm x 48 mm ASC:245 mm x 48 mm ARC:300 mm x 48 mm | 重量 | 不銹鋼:~ 0.9 kg 鈦:~ 0.7 kg |
數(shù)字接口 | RS-232 (TriOS) | 系統(tǒng)兼容性 | RS-232(TriOS協(xié)議) |
電源 | 8~12 VDC (± 3 %) | 功耗 | ≤ 0.85 W |
**壓力 | SubConn:30 bar | 防水等級 | IP68 |
采樣溫度 | +2~+40 °C | 環(huán)境溫度 | +2~+40 °C |
保存溫度 | -20~+80 °C | 流入速度 | 0.1~10 m/s |
校準(zhǔn)/維護(hù)間隔 | 24個月 | 選配傳感器 | 傾角傳感器:±45° 壓力傳感器:0~5 Bar、0~10 Bar、0~50 Bar可選 |
RAMSES-ACC-VIS RAMSES-ACC-UV
一、水質(zhì)研究:葉綠素、藍(lán)藻、TSM、CDOM反演監(jiān)測
1.基于光譜匹配的內(nèi)陸水體反演算法——《光譜學(xué)與光譜分析》2010
2.水體光譜測量與分析Ⅰ:水面以上測量法——《遙感學(xué)報》2004
3.水下光譜輻射測量技術(shù)——《海洋技術(shù)》2003
4.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》2017
5.Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover——《Remote Sensing》2017
二、光學(xué)模型研究
1.秋季太湖水下光場結(jié)構(gòu)及其對水生態(tài)系統(tǒng)的影響——《湖泊科學(xué)》2009
2.A model to predict spatial spectral and vertical changes in the average cosine of the underwater light fields: Implications for Remote sensing of shelf-seawaters——《Continental Shelf Research》2016
3.A practical model for sunlight disinfection of a subtropical maturation pond——《Water Research》2017
4.A spectral model for correcting sun glint and sky glint——《Conference paper: Ocean Optics》2016
5.Absorption correction and phase function shape effects on the closure of apparent optical properties——《Applied Optics》2016
三、衛(wèi)星數(shù)據(jù)驗證
1.Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes——《Remote Sensing》2017
2.Impact of spectral resolution of in situ ocean color radiometric data in satellite matchups analyses——《Optics Express》2017
3.Response to Temperature of a Class of In Situ Hyperspectral Radiometers——《Journal of Atmospheric and Oceanic technology》2017
4.The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters——《Atmos. Meas. Tech.》2015
5.The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data——《Remote Sensing》2016
四、光合作用研究
1.Basin-scale spatio-temporal variability and control of phytoplankton photosynthesis in the Baltic Sea: The first multiwavelength fast repetition rate fluorescence study operated on a ship-of-opportunity——《Journal of Marine Systems》2017
2.Chlorophyll a fluorescence lifetime reveals reversible UV?induced photosynthetic activity in the green algae Tetraselmis——《Eur Biophys J》2016
3.Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among downregulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms——《Photosynth Res》2016
4.Primary production calculations for sea ice from bio-optical observations in the Baltic Sea——《Elementa: Science of the Anthropocene》2015
5.The Use of Rapid Light Curves to Assess Photosynthetic Performance of Different Ice- Algal Communities——《Norwegian University of Science and Technology》2017
五、光學(xué)參數(shù)測量
1.A novel method of measuring upwelling radiance in the hydrographic sub-hull——《J. Eur. Opt. Soc.》2016
2.Pelagic effects of offshore wind farm foundations in the stratified North Sea——《Progress in Oceanography》2017
3.Penetration of Visible Solar Radiation in Waters of the Barents Sea Depending on Cloudiness and Coccolithophore Blooms——《Oceanology》2017
4.Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012——《Cold Regions Science and Technology》2016
6.Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data——《Remote Sensing》2017
六、光脅迫研究
1.A (too) bright future? Arctic diatoms under radiation stress——《Polar Biol》2016
2.Comparison of bacterial growth in response to photodegraded terrestrial chromophoric dissolved organic matter in two lakes——《Science of the Total Environment》2017
3.Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates——《Water Research》2016
4.Effects of light and short-term temperature elevation on the 48-h hatching success of cold-stored Acartia tonsa Dana eggs——《Aquacult Int》2016
5.Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages——《Aquacult Environ Interact》2017
七、水下光場研究
1.Effects of an Arctic under-ice bloom on solar radiant heating of the water column——《Journal of Geophysical Research: Oceans》2016
2.Influence of snow depth and surface flooding on light transmission through Antarctic pack ice——《Journal of Geophysical Research: Oceans》2016
八、藻類水華監(jiān)測
1.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》2017
2.Empirical Model for Phycocyanin Concentration Estimation as an Indicator of Cyanobacterial Bloom in the Optically Complex Coastal Waters of the Baltic Sea——《Remote Sensing》2016
暫無數(shù)據(jù)!