參考價(jià)格
面議型號(hào)
品牌
產(chǎn)地
英國樣本
暫無看了Hiden ABR氣體競爭性吸附分析儀的用戶又看了
虛擬號(hào)將在 180 秒后失效
使用微信掃碼撥號(hào)
優(yōu)勢:
獨(dú)特的:結(jié)合在線質(zhì)譜的高壓穿透曲線分析儀
全自動(dòng):用戶變成進(jìn)行全自動(dòng)運(yùn)行實(shí)驗(yàn)。
優(yōu)化的樣品床:經(jīng)大量實(shí)踐研究而得到**化的2 cc樣品床
簡介
ABR是一款具有完全可編程操作的專用穿透曲線分析儀,包括對(duì)總壓力、流速、組分和溫度的控制。
樣品床的尺寸可以根據(jù)用戶需要進(jìn)行更換。利用升溫和氣體吹掃(或抽真空)對(duì)樣品進(jìn)行原位干燥。反應(yīng)氣體混合物流過樣品床,同時(shí)用集成的在線質(zhì)譜儀對(duì)下游氣體進(jìn)行實(shí)時(shí)監(jiān)測。
可對(duì)總壓力、流速、組分和溫度編程控制。
優(yōu)化的研究級(jí)樣品床設(shè)計(jì)
超低死體積,使得質(zhì)譜信號(hào)響應(yīng)迅速
自動(dòng)進(jìn)行吹掃氣體和實(shí)驗(yàn)氣體的轉(zhuǎn)換
具備氣體-蒸氣和蒸氣-蒸氣分離配置
實(shí)驗(yàn)壓力可選配至50 bar
完全集成的在線質(zhì)譜和優(yōu)化的采樣設(shè)計(jì)
應(yīng)用
ABR的主要目的是滿足研究人員希望表征那些沒有合成較大樣品量的時(shí)間或費(fèi)用的少量新型吸附劑,如MOFs、ZIF、COF和相關(guān)多孔材料等。R
應(yīng)用領(lǐng)域
?空氣分離
?二氧化碳捕獲和存儲(chǔ)
?從流出物流中去除有毒或有害的氣體
?回收稀有(**)氣體
?天然氣和沼氣升級(jí)
技術(shù)規(guī)格:
1.自動(dòng)穿透反應(yīng)系統(tǒng)
2.反應(yīng)床體積: 2cc
3.工作壓力:10bar/50bar
4.**工作溫度:0~300℃
5.溫度精度:±0.025 ℃
6.流量范圍:3~1000ml /min
7.可選配超高真空泵站:真空度達(dá)10-8mbar
8.Hiden自己品牌在線質(zhì)譜儀
8.1 質(zhì)量數(shù)范圍:1~200 amu
8.2 響應(yīng)時(shí)間: 200毫秒
應(yīng)用案例
Breakthrough curves determined for 13X Zeolite
Breakthrough curves determined for a nitrogen/oxygen mixture at 10 bar and 25℃ for 13X zeolite. The concentration is the mass spectrometer signal in arbitrary units.
國內(nèi)用戶:
上海科技大學(xué)|物質(zhì)科學(xué)與技術(shù)學(xué)院
福建師范大學(xué)材料科學(xué)與工程學(xué)院
Academic References
Listed below are peer-reviewed publications featuring data measured using Hiden Isochema ABR breakthrough analyzers. All data uses Hiden Isochema ABR breakthrough analyzers with integrated Hiden DSMS dynamic sampling mass spectrometers. In all cases, data was measured by end users at their laboratory.
1. Porous organic cages for sulfur hexafluoride separation
T. Hasell, M. Miklitz, A. Stephenson, M. A. Little, S. Y. Chong, R. Clowes, L. Chen, D. Tribello, K. E. Jelfs, and A. I. Cooper
Journal of American Chemical Society (2016)
DOI: 10.1021/jacs.5b11797
2. Metal-organic framework with optimally selective xenon adsorption and separation
D. Banerjee, C. M. Simon, A. M. Plonka, R. K. Motkuri, J. Liu, X. Chen, B. Smit, J. B. Parise, M. Haranczyk and P. K. Thallapally
Nature Communications (2016)
DOI: 10.1038/ncomms11831
3. Metal-organic frameworks for removal of Xe and Kr from nuclear fuel reprocessing plants
J. Liu, P. K. Thallapally and D. Strachan
Langmuir, 2012, 28 (31), pp 11584–11589
DOI: 10.1021/la301870n
4. Selective CO2 Capture from Flue Gas Using Metal–Organic Frameworks―A Fixed Bed Study
J. Liu, P. K. Thallapally and B. P. McGrail
J. Phys. Chem. C, 2012, 116 (17), pp 9575–9581
DOI: 10.1021/jp300961j
5. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework
S. Yang, A. J. Ramirez-Cuesta, R. Newby, V. Garcia-Sakai, P. Manuel, S. K. Callear, S. I. Campbell, C. C. Tang and M. Schr?der
Nature Chemistry 7, 121–129 (2015)
DOI: 10.1038/nchem.2114
6. Separation of rare gases and chiral molecules by selective binding in porous organic cages
L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell, M. A. Little, A. Kewley, M. E. Briggs, A. Stephenson, K. M. Thomas, J. A. Armstrong, J. Bell, J. Busto, R. Noel, J. Liu, D. M. Strachan, P. K. Thallapally and A. I. Cooper
Nature Materials 13, 954–960 (2014)
DOI: 10.1038/nmat4035
暫無數(shù)據(jù)!