參考價(jià)格
面議型號(hào)
品牌
產(chǎn)地
德國(guó)樣本
暫無(wú)看了無(wú)液氦低溫強(qiáng)磁場(chǎng)掃描探針顯微鏡的用戶又看了
虛擬號(hào)將在 180 秒后失效
使用微信掃碼撥號(hào)
德國(guó)Attocube Systems AG公司成立于2002年,作為納米科學(xué)領(lǐng)域年輕的儀器供應(yīng)商,Attocube Systems AG以其掌握的納米精度定位**成果和強(qiáng)大的技術(shù)實(shí)力,在短短的幾年中研制開(kāi)發(fā)了低震動(dòng)無(wú)液氦磁體與恒溫器、多種低溫磁場(chǎng)下工作的掃描探針顯微鏡、極端環(huán)境應(yīng)用納米精度位移器、皮米精度位移激光干涉器等系列產(chǎn)品,深受用戶贊譽(yù)。自成立以來(lái),Attocube Systems AG已經(jīng)獲得了許多榮譽(yù),包括Finalist for the 27th Innovation Award of the German Ecomomy 2007和 ****00 Innovation Award 2013 等。
無(wú)液氦低溫強(qiáng)磁場(chǎng)掃描探針顯微鏡
德國(guó)attocube公司推出的attoDRY Lab系列無(wú)液氦低溫強(qiáng)磁場(chǎng)掃描探針顯微鏡系統(tǒng)基于attoDRY系列無(wú)液氦強(qiáng)磁場(chǎng)超低震動(dòng)恒溫器和多種掃描探針顯微鏡插件,特別適應(yīng)于低溫光學(xué)實(shí)驗(yàn)、掃描探針顯微鏡等應(yīng)用,產(chǎn)品優(yōu)異的穩(wěn)定性為超高分辨率的表面表征研究奠定了堅(jiān)實(shí)的基礎(chǔ)。不止于此,產(chǎn)品還*早集成了簡(jiǎn)單易用的觸摸屏控制系統(tǒng)以方便自由控制溫度大小與磁場(chǎng)強(qiáng)度的商業(yè)化恒溫器。掃描探針顯微鏡插件包括:attoAFM/MFM/cAFM/PRFM原子力、磁力、導(dǎo)電力、壓電力顯微鏡;attoCFM共聚焦顯微鏡;Raman與光致發(fā)光譜;atto3DR雙軸旋轉(zhuǎn)平臺(tái)等。 |
參數(shù)與技術(shù)特點(diǎn):
+ 無(wú)液氦,閉路可循環(huán)系統(tǒng)
+ 獨(dú)特設(shè)計(jì),超低震動(dòng)(0.12 nm RMS)
+ 溫度范圍:1.5 K...300 K 或 4 K...300 K
+ 磁場(chǎng)強(qiáng)度:**可達(dá)15T
+ 多功能測(cè)量平臺(tái):AFM/MFM/ct-AFM/PRFM/CFM/RAMAN
+ 超高溫度穩(wěn)定性
+ 全自動(dòng)控制,觸摸屏控制
+ 快速冷卻:1-2小時(shí)樣品冷卻
相關(guān)閱讀:
1、無(wú)液氦低溫強(qiáng)磁場(chǎng)共聚焦顯微鏡 - attoCFM
2、低溫強(qiáng)磁場(chǎng)原子力/磁力/掃描霍爾顯微鏡 - attoAFM/attoMFM/attoSHPM
3、磁共振顯微鏡/低溫強(qiáng)磁場(chǎng)磁共振顯微鏡 - attoCSFM
4、低震動(dòng)無(wú)液氦磁體與恒溫器 - attoDRY系列
部分發(fā)表文獻(xiàn):
2. Chaoyang Lu et.al, Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 13, 770–775 (2019)
3. Yuanbo Zhang et. Al, “Signatures of tunable superconductivity in a trilayer graphene moiré superlattice”Nature, 572, 215-219 (2019)
4. P. Maletinsky et. Al, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science, 364, 973 (2019)
5. Haomin WANG et al, “Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment”.Nature communications, 10, 2815 (2019)
6. Mingyuan Huang et.al, Magnetic Order-Induced Polarization Anomaly of Raman Scattering in 2D Magnet CrI3, Nano Letters, 2020,20,1, 729-734
7. Alexander H?gele et. al, Cavity-control of interlayer excitons in van der Waals heterostructures, Nature communications, 2019,10:3697.
8. Hanxuan Lin, et al. Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites. Phys. Rev. Lett. 120, 267202(2018)
9. Chaoyang Lu et.al, High-efficiency multiphoton boson sampling. Nature Photonics, 11, 361-365, (2017)
10. K. Yasuda, et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 2017, 358, 1311-1314
11. Zhu, Y. et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature communications, 2016,7:11260.
12. Yang, W.;et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Letters 2016, 16, 1560-1567.
13. Surajit Saha; et al. Long-range magnetic coupling across a polar insulating layer, Nature communications, 2016,7:11015.
14. He, Y. M.; et al. Single quantum emitters in monolayer semiconductors.Nature Nanotechnology 2015, 10, 497-502.
16. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nature Nanotechnology, 2015,10,120-124.
17. Nanoscale nuclear magnetic imaging with chemical contrast. Nature Nanotechnology, 2015, 10, 125-128.
18. Observation of biexcitons in monolayer WSe2. Nature Physics, 2015, 11, 477-481.
19. Visualization of a ferromagnetic metallic edge state in manganite strips. Nature Communications, 2015, 6:6179.
20. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano, 2015, 9, 647-655.
21. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nature Communications, 2014, 5:3345.
22. Deterministic and electrically tunable bright single-photon source. Nature Communications, 2014, 5:3240.
23. Dynamic Visualization of Nanoscale Vortex Orbits. ACS Nano, 2014, 8, 2782-2787.
24. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature Materials, 2013, 12, 134-138.
25. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Communications, 2013, 4:2279.
26. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotechnology, 2013, 8, 569-574.
27. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Physical Review B, 2013, 88, 165407.
28. Origin of negative magnetoresistance of GaAs/(Ga,Mn)As core-shell nanowires. Physical Review B, 2013, 87, 245303.
29. Magnetic Imaging on the Nanometer Scale Using Low-Temperature Scanning Probe Techniques. Microscopy Today, 2011, 19, 34-38.
30. Visualization of charge transport through Landau levels in graphene. Nature Physics, 2010, 6, 870-874.
部分用戶列表
attocube公司產(chǎn)品以其穩(wěn)定的性能、極高的精度和良好的用戶體驗(yàn)得到了國(guó)內(nèi)外眾多科學(xué)家的認(rèn)可和肯定。attocube公司的產(chǎn)品在國(guó)內(nèi)也得到了低溫、超導(dǎo)、真空等研究領(lǐng)域**科學(xué)家和研究組的歡迎......
北京大學(xué) | 清華大學(xué) |
中國(guó)科技大學(xué) | 南京大學(xué) |
中科院物理所 | 中科院半導(dǎo)體所 |
中科院武漢數(shù)學(xué)物理所 | 上海同步輻射中心 |
中科院上海應(yīng)用技術(shù)物理研究所 | 北京理工大學(xué) |
復(fù)旦大學(xué) | 哈爾濱工業(yè)大學(xué) |
中國(guó)科學(xué)院蘇州納米技術(shù)與納米仿生研究所…… |
暫無(wú)數(shù)據(jù)!